Stability of solutions to the logistic equation with delay, diffusion and nonclassical boundary conditions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The work is devoted to the logistic equation with delay and diffusion with non-classical boundary conditions. The stability of a nontrivial equilibrium state is investigated, and the resulting bifurcations are studied numerically.

Sobre autores

I. Kashchenko

P. G. Demidov Yaroslavl State University

Autor responsável pela correspondência
Email: iliyask@uniyar.ac.ru

Regional Scientific and Educational Mathematical Center of Yaroslavl State University

Rússia, Yaroslavl

S. Kashchenko

P. G. Demidov Yaroslavl State University

Email: kasch@uniyar.ac.ru

Regional Scientific and Educational Mathematical Center of Yaroslavl State University

Rússia, Yaroslavl

I. Maslenikov

P. G. Demidov Yaroslavl State University

Email: igor.maslenikov16@yandex.ru

Regional Scientific and Educational Mathematical Center of Yaroslavl State University

Rússia, Yaroslavl

Bibliografia

  1. Wu J. Theory and applications of partial functional differential equations. New York: Springer-Verlag, 1996.
  2. Cushing J. M. Integrodifferential equations and delay models in population dynamics. Springer, 1977.
  3. Kuang Y. Delay differential equations: with applications in population dynamics. Academic Press, 1993.
  4. Murray J.D. Mathematical biology II: Spatial models and biomedical applications. New York : Springer, 2001. V. 3.
  5. Gourley S.A., So J.W-H., Wu J.H. Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics // Journal of Mathematical Sciences. 2004. V. 124. P. 5119–5153.
  6. Кащенко С.А., Логинов Д.О. Бифуркации при варьировании граничных условий в логистическом уравнении с запаздыванием и диффузией // Математические заметки. 2019. Т. 106. № 1. С. 138–143.
  7. Wright E.M. A non-linear difference-differential equation // J. fur die reine und angewandte Math. (Crelles Journal). 1955. V. 194. P. 66–87.
  8. Кащенко С.А. Динамика моделей на основе логистического уравнения с запаздыванием. М.: КРАСАНД, 2020.
  9. Кащенко С.А. , Толбей А.О. Бифуркации в логистическом уравнении с диффузией и запаздыванием в граничном условии // Матем. заметки. 2023. Т. 113. № 6. С. 940–944.
  10. Rudyi A.S. Theoretical fundamentals of the method for thermal diffusivity measurements from auto-oscillation parameters in a system with a thermal feedback // International J. of Thermophysics. 1993. V. 14. P. 159–172.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024