The Role of β-cell Autoantibodies in Prediction of Type 1 Diabetes Mellitus in Children



如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Background: The study is aimed at assessing the possibility of type 1 diabetes mellitus (T1DM) prediction on the basis of autoantibody concentrations and their dynamics. Antibodies against glutamic acid decarboxylase (GADA), tyrosine phosphatase (IA-2A), and zinc transporter 8 (ZnT8A) were assayed.

Methods: Regression modeling was applied to repeated measured longitudinal data from a total of 517 participants: 314 children with T1DM and 203 healthy siblings.

Results: Among healthy siblings, the high risk of T1DM was associated with 1) high baseline concentration of all three antibodies (an average of 57.5-92.0 times compared with the reference values); 2) significant and rapid decrease in GADA and IA-2A by −23.29 and −43.30 IU/mL/month, respectively; 3) insignificant and very slow declining of ZnT8A level by −5.30 U/mL/month.

Conclusions: Modeling of longitudinal GADA, IA-2A, and ZnT8A profiles may be a basis for development of more complex and accurate diagnostic systems. Such an approach appears to be promising but it requires further investigations.

 

全文:

受限制的访问

作者简介

Kseniya Korneva

Privolzhsky Research Medical University

编辑信件的主要联系方式.
Email: ksenkor@mail.ru
ORCID iD: 0000-0003-3293-4636

MD, Associate Professor, Department of Endocrinology and Internal Medicine

俄罗斯联邦, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia

Dmitry Chichevatov

Penza State University

Email: chichevatov69@mail.ru
ORCID iD: 0000-0001-6436-3386

MD, Professor, Department of Surgery

40 Krasnaya Street, Penza, 440026, Russia

Leonid Strongin

Privolzhsky Research Medical University

Email: malstrong@mail.ru
ORCID iD: 0000-0003-2645-2729

MD, professor of the Department of Endocrinology and Internal Medicine

俄罗斯联邦, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia

Vladimir Zagainov

Privolzhsky Research Medical University

Email: zagainov@gmail.com
ORCID iD: 0000-0002-5769-0378

MD, Professor, Head of the Department of Faculty Surgery and Transplantology

俄罗斯联邦, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia

参考

  1. O'Donovan AJ, Gorelik S, Nally LM. Shifting the paradigm of type 1 diabetes: a narrative review of disease modifying therapies. Front Endocrinol (Lausanne). 2024;15:1477101. doi: 10.3389/fendo.2024.1477101.
  2. Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 2015;38:1964-74. doi: 10.2337/dc15-1419.
  3. Vehik K, Bonifacio E, Lernmark Å, Yu L, Williams A, Schatz D, et al. TEDDY Study Group. Hierarchical Order of Distinct Autoantibody Spreading and Progression to Type 1 Diabetes in the TEDDY Study. Diabetes Care 2020;43:2066-73. doi: 10.2337/dc19-2547.
  4. Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 2013;309:2473-9. doi: 10.1001/jama.2013.6285.
  5. Krischer JP. Type 1 Diabetes TrialNet Study Group. The use of intermediate endpoints in the design of type 1 diabetes prevention trials. Diabetologia 2013;56:1919-24. doi: 10.1007/s00125-013-2960-7.
  6. Quinn LM, Swaby R, Tatovic D, Narendran P, Besser REJ, Dayan CM. What does the licensing of teplizumab mean for diabetes care? Diabetes Obes Metab 2023;25:2051-57. doi: 10.1111/dom.15071.
  7. Achenbach P, Warncke K, Reiter J, Naserke HE, Williams AJ, Bingley PJ, et al. Stratification of type 1 diabetes risk on the basis of islet autoantibody characteristics. Diabetes 2004;53:384-92. doi: 10.2337/diabetes.53.2.384.
  8. Podichetty JT, Lang P, O'Doherty IM, David SE, Muse RN, Karpen SR, et al. Type-1 Diabetes Consortium (T1DC). Leveraging Real-World Data for EMA Qualification of a Model-Based Biomarker Tool to Optimize Type-1 Diabetes Prevention Studies. Clin Pharmacol Ther 2022;111:1133-41. doi: 10.1002/cpt.2559
  9. Kawasaki E. Anti-Islet Autoantibodies in Type 1 Diabetes. Int J Mol Sci 2023;24:10012. doi: 10.3390/ijms241210012.
  10. Endesfelder D, Zu Castell W, Bonifacio E, Rewers M, Hagopian WA, She JX, et al. TEDDY Study Group. Time-Resolved Autoantibody Profiling Facilitates Stratification of Preclinical Type 1 Diabetes in Children. Diabetes 2019;68:119-30. doi: 10.2337/db18-0594.
  11. Pozzilli V, Grasso EA, Tomassini V. Similarities and differences between multiple sclerosis and type 1 diabetes. Diabetes Metab Res Rev. 2022 Jan;38(1):e3505. doi: 10.1002/dmrr.3505.
  12. Bonifacio E, Achenbach P. Birth and coming of age of islet autoantibodies. Clin Exp Immunol 2019;198:294-305. doi: 10.1111/cei.13360

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия  ПИ № ФС 77 - 86296 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80632 от 15.03.2021 г
.